The stable manifold theorem for non-linear stochastic systems with memory II. The local stable manifold theorem

نویسندگان

  • Salah-Eldin A. Mohammed
  • Michael K.R. Scheutzow
چکیده

We state and prove a Local Stable Manifold Theorem (Theorem 4.1) for non-linear stochastic differential systems with finite memory (viz. stochastic functional differential equations (sfde’s)). We introduce the notion of hyperbolicity for stationary trajectories of sfde’s. We then establish the existence of smooth stable and unstable manifolds in a neighborhood of a hyperbolic stationary trajectory. The stable and unstable manifolds are stationary and asymptotically invariant under the stochastic semiflow. The proof uses infinitedimensional multiplicative ergodic theory techniques developed by D. Ruelle, together with interpolation arguments. r 2003 Elsevier Inc. All rights reserved. MSC: primary 60H10; 60H20; secondary 60H25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

The stable manifold theorem for non-linear stochastic systems with memory. I. Existence of the semiflow

We consider non-linear stochastic functional differential equations (sfde’s) on Euclidean space. We give sufficient conditions for the sfde to admit locally compact smooth cocycles on the underlying infinite-dimensional state space. Our construction is based on the theory of finite-dimensional stochastic flows and a non-linear variational technique. In Part II of this article, the above result ...

متن کامل

The Stable Manifold Theorem for Semi-linear Stochastic Evolution Equations and Stochastic Partial Differential Equations I: the Stochastic Semiflow

The main objective of this work is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. Such characterization is realized through the long-term behavior of the solution field near stationary points. The analysis falls in two parts I, II. In Part I (this pap...

متن کامل

The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations Ii: Existence of Stable and Unstable Manifolds

This article is a sequel to [M.Z.Z.1] aimed at completing the characterization of the pathwise local structure of solutions of semi-linear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. The characterization is expressed in terms of the almost sure long-time behavior of trajectories of the equation in relation to the stati...

متن کامل

The Stable Manifold Theorem for Stochastic Differential Equations

We formulate and prove a local stable manifold theorem for stochastic differential equations (SDEs) that are driven by spatial Kunita-type semimartingales with stationary ergodic increments. Both Stratonovich and Itôtype equations are treated. Starting with the existence of a stochastic flow for a SDE, we introduce the notion of a hyperbolic stationary trajectory. We prove the existence of inva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002